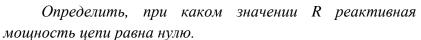
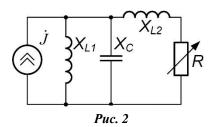

Шифр	
Задача №1	Баллы 10

Задача 1

Дана цепь постоянного тока (рис. 1) со следующими параметрами: $E_1 = 100~B, E_2 = 200~B, R = 10~O$ м.

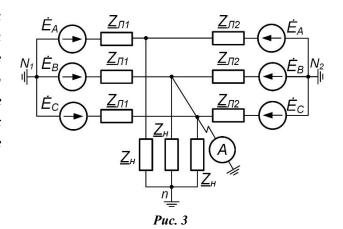

Определить, при каком сопротивлении R_1 показание амперметра будет максимальным. Найти это показание.



Шифр	
Задача №2	Баллы 15

Задача 2

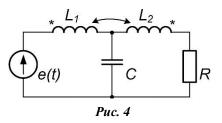
B цепи синусоидального тока, изображенной на рис. 2, $\dot{J}=10\,A$. При R=0 реактивная мощность цепи Q=1000 вар, при $R=\infty$ реактивная мощность Q=-1000 вар.



Шифр	
Задача №3	Баллы 20

Задача З

К линии с двухсторонним питанием подключена активно-индуктивная нагрузка с $Z_H = 30 + j40$ Ом. В узле нагрузки произошло присоединения замыкание фаз Ви С на землю. Не используя метод симметричных составляющих, определить показание $ec\pi u$ $\dot{E}_A = 63,5$ амперметра, κВ, $\underline{Z}_{JI} = 5 + j10 O_M, \underline{Z}_{JI2} = 10 + j20 O_M.$

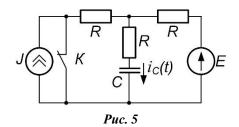


Шифр	
Задача №4	Баллы 18

Задача 4

B цепи, изображенной на рис. 4, действует источник несинусоидальной ЭДС

источник несинусойоальной ЭДС
$$e(t) = 30 + 20\sin(\omega_1 t + 30^\circ) + 10\sin(\omega_2 t - 60^\circ) B,$$
 $\omega_1 = 628 \ pad/c, R = 10 \ Om, C = 23,5 \ mk\Phi, L_1 = 33 \ m\Gamma h,$ $L_2 = 100 \ m\Gamma h, \ \kappa$ оэффициент взаимноиндуктивной связи равен $0,3$.

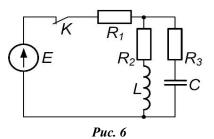

При каком соотношении частот ω_2/ω_1 в резисторе будет выделяться минимальная мощность. Найти эту мощность.

Шифр	
Задача №5	Баллы 12

Задача 5

B цепи на рис. 5 известны параметры: E=200~B, $R=50~Om,\,J=4~A,\,C=20~m\kappa\Phi.$

Определить зависимость тока через конденсатор от времени.



Шифр	
Задача №6	Баллы 25

Задача 6

B цепи на рис. 6 известны параметры: $R_1=40~O$ м, $R_2=R_3=20~O$ м, E=60~B, $L=20~м\Gamma$ н, $C=10~м\kappa\Phi$.

Определить сколько энегрии выделится на резисторе R_2 за время от начала коммутации ключа до того момента, когда производная напряжения на конденсаторе первый раз станет равной нулю.

